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The primary goal of this chapter is to consider the relation among mathemat-

ics achievement, mathematics language, and central numerical knowledge.

My colleagues and I have been examining how culturally bound factors such

as characteristics of numerical language impact children’s learning of school

mathematics content (e.g., Miura & Okamoto, 2003). At the same time, from

a neo-Piagetian perspective, my colleagues and I have examined the develop-

ment of central numerical knowledge across cultures (e.g., Okamoto, Case,

Bleiker, & Henderson, 1996). The former line of work suggests that mathe-

matics achievement is impacted by cultural factors. The latter suggests

that despite achievement differences, children develop numerical knowledge

at similar rates. These two suggestions appear contradictory. How do

I reconcile these seemingly contradictory suggestions?

My current view is that children growing up in cultures as different as

Japan and the United States, for example, develop foundational numerical

concepts at about the same rate. However, achievement gaps in mathematics

reflect different problem-solving experiences children encounter in and out

of school that are valued by particular cultures (see also Chapter 3 by LeFevre

et al. and Chapter 5 by Opfer et al.). Differences in numerical language char-

acteristics may provide qualitatively different problem-solving experiences.

This is particularly so for young children who are just beginning formal

schooling. For these children, differences in numerical language characteris-

tics impact both their learning of school mathematics content and develop-

ment of their central numerical knowledge.
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As such, this chapter is organized into two broad sections. The first

focuses on mathematics achievement differences and factors that may explain

these differences. Evidence is presented in favor of numerical/mathematical

language as a potential factor to explain the achievement gap. In the second

section, I describe a series of cross-cultural studies that examined the relation

between the development of central conceptual knowledge and the attainment

of specific skills in particular domains. With the exception of one anomaly,

the data point to similar rates of development of central conceptual knowl-

edge. The anomaly was found in Japanese 6-year olds’ numerical knowledge.

These children showed the development of numerical knowledge 1–2 years

ahead of their US peers. This anomaly will be explained in terms of different

characteristics of numerical language.

MATHEMATICS LANGUAGE AND ACHIEVEMENT

Achievement gaps between US and East Asian students have been documen-

ted since the publication of the results from the First International Mathemat-

ics Study (FIMS; Hus�en, 1967). Although US students have shown an upward

trend in international standings over the last five cycles of the Trends in Inter-

national Mathematics and Science Study (TIMSS), their performance remains

substantially lower than their East Asian counterparts (Beaton et al., 1997;

Mullis & Martin, 2008; Mullis et al., 1998, 2000; Mullis, Martin, Foy, &

Arora, 2012; Mullis, Martin, Gonzalez, & Chrostowski, 2005). In fact, the

most recent TIMSS results showed that at the fourth-grade level, US students

were 10–14 percentage points behind their East Asian peers (Mullis et al.,

2012). Similar results have been obtained in the Program for International

Student Assessment. The most recent data from the 2012 study show that only

9% of US 15-year-old students reached the highest category of performance

(i.e., scores 607 or above out of 1000 maximum) in mathematics literacy

whereas 55% of Chinese students in Shanghai did so (retrieved from http://

nces.ed.gov/surveys/pisa/pisa2012/index.asp).

In both these large-scale international comparisons, East Asian students

show strengths in the attainment of mathematics content deemed important

by the experts, including those who constructed the measures. These results

have inspired many researchers to attempt to explain why such differences

exist (see Chapter 5 by Opfer et al.).

Early research comparing characteristics of schools in Japan, Taiwan, and

the United States documented that Chinese and Japanese students spent more

time in school in general and, in particular, studying mathematics than did

their US counterparts (e.g., Stigler, Lee, & Stevenson, 1987). Subsequent

research began to focus on teaching practices. This line of work is most

clearly represented in Stigler and Hiebert’s (1999) book, The Teaching Gap.
They argued that differences in teaching methods not teachers’ ability to

teach led to varying learning opportunities for US and Japanese students.

For example, the video analysis of teaching practices in the United States,
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Germany, and Japan (TIMSS videotape study; Stigler, Gonzales, Kawanaka,

Knoll, & Serrano, 1999) showed a wide disparity in the types of mathematical

activities in which students were engaged: during seatwork, Japanese students

spent far more time inventing, analyzing, and proving than did their US and

German peers, who, in turn, spent almost their entire time practicing routine

procedures. Japanese practices documented in the TIMSS videotape study

are consistent with the practices recommended by the National Council of

Teachers of Mathematics (2000).

It is hardly surprising that variations in school experiences, in particular

mathematics classroom experiences, account for achievement differences.

However, marked differences in mathematics performance have been found

as early as in kindergarten when the impact of teaching effectiveness and

other school-related factors is minimal (e.g., Stevenson, Lee, & Stigler,

1986). This finding calls for consideration of factors other than teaching

practices to account for early differences in mathematics achievement (see

Chapter 5 by Opfer et al.).

Mathematics Language

The factor of central interest in explaining achievement differences is varia-

tions in how mathematical terms are expressed in different language groups.

Our focus has been to examine the impact of numerical language characteris-

tics between East Asian (e.g., Japanese) and non-East Asian (e.g., English)

languages (e.g., Miura & Okamoto, 2003). Although written numerical sym-

bols (i.e., Arabic numerals) are practically universal across cultures, spoken

words associated with written symbols differ from one language to another

(e.g., 1 is spoken as “yi,” “ichi,” and “il” in Chinese, Japanese, and Korean,

respectively). As in any language, different words are used to distinguish

the base sequence of numbers from 1 to 10. The number names above 10,

however, show interesting variations.

The number naming systems of East Asian languages such as Chinese,

Japanese, and Korean have their roots in ancient Chinese. In these languages,

the number names above 10 are congruent with the traditional base-10 numer-

ation system (see Table 1). That is, a number word for any given two-digit

number can be generated from a set of base-10 rules and a base sequence

of number names. For example, 11 is spoken as “ju-ichi” (i.e., ten-one) in

Japanese as opposed to “eleven” in English. The latter is a new word for chil-

dren to memorize. Similarly, the teen words in English (e.g., fourteen) have

the single-digit number word first, followed by the word that signals “ten.”

In Korean, 14 is “shib-sah,” which means “ten-four.” The numbers 20 and

above can also be generated by applying the base-10 rules in these East Asian

languages. In Chinese, 55 is spoken as “wu-shi-wu,” which is “five-tens-five.”

In English, however, it is “fifty-five,” which implies “fifty” as a chunk, not
five tens. It should be clear from these examples that Chinese, Japanese,

and Korean children need to memorize only the number names for 1–10,
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TABLE 1 Number words in English, Japanese, Chinese, and Korean

Number English Japanese Chinese Korean

1 One Ichi Yi Il

2 Two Ni Er Ee

3 Three San San Sam

4 Four Shi Si Sah

5 Five Go Wu Oh

6 Six Roku Liu Yook

7 Seven Shichi Qi Chil

8 Eight Hachi Ba Pal

9 Nine Kyuu Jiu Goo

10 Ten Juu Shi Shib

11 Eleven Juu ichi Shi yi Shib il

12 Twelve Juu ni Shi er Shib ee

13 Thirteen Juu san Shi san Shib sam

14 Fourteen Juu shi Shi si Shib sah

15 Fifteen Juu go Shi wu Shib oh

16 Sixteen Juu roku Shi liu Shib yook

17 Seventeen Juu shichi Shi qi Shib chil

18 Eighteen Juu hachi Shi ba Shib pal

19 Nineteen Juu kyuu Shi jiu Shib goo

20 Twenty Ni juu Er shi Ee shib

22 Twenty two Ni juu ni Er shi er Ee shib ee

33 Thirty three San juu san San shi san Sam shib sam

44 Forty four Shi juu shi Si shi si Sah shib sah

55 Fifty five Go juu go Wu shi wu Oh shib oh

66 Sixty six Roku juu roku Liu shi lie Yook shib yook

77 Seventy seven Shichi juu shichi Qi shi qi Chil shib chil

88 Eighty eight Hachi juu hachi Ba shi ba Pal shib pal

99 Ninety nine Kyuu juu kyuu Jiu shi jiu Goo shib goo

100 One hundred Hyaku Bai Baek
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and the rest can be generated by using these names and applying the base-10

rules.1

On a side note, English is not the only language that does not follow the

base-10 rules. Spanish is somewhat closer to English in that new number names

are used to express numbers 11 through 15 and decade names do not suggest

multiples of tens. There are number names in Spanish that are similar to those

of East Asian languages: the numbers 16–19 are spoken as ten and single-digit

number (e.g., 17 is “diecisiete,” which is ten-seven). Other interesting number

names include 43 in German (which means three and forty), 80 in French (four

times twenty), and 50 in Danish ((two and a half ) times twenty). (See Chapter 3

by LeFevre et al. for related information about Turkish as well.)

Cognitive Organization of Numbers

Given a variation in characteristics of numerical language, it is plausible

to expect that such a variation may have differentiated effects on how children

mentally organize numbers. In a series of studies, Miura and colleagues (e.g.,

Miura, 1987; Miura & Okamoto, 1989) pursued this very question. That is,

they wondered if children speaking regular or irregular number words develop

different mental representations of two-digit numbers.

The method used in these studies involved commercially available base-10

blocks (see Fig. 1). Children were shown small cubes (one-blocks) and

FIG. 1 One blocks (right) and ten blocks (left).

1. Although children’s acquisition of two digit numbers is the focus of this chapter, the number

names in these East Asian languages remain regular beyond 99. In Japanese, for example, the

numbers up to 99,999 can be generated by applying the base 10 rules.
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rectangular prisms (ten-blocks). They then saw a demonstration in which ten

small cubes (10 one-blocks) were equivalent to one rectangular prism (1 ten-

block). They were next asked to construct two-digit numbers using one-

and ten-blocks. This was considered as children’s spontaneous preference

to represent the number. Once children complete the task, they were shown

their own construction of each number and asked if they could think of

another way to show the same number. In the initial study conducted by

Miura (1987), Japanese-speaking first graders2 spontaneously used the

precise combinations of ten- and one-blocks to show two-digit numbers

(e.g., 1 ten-block and 3 one-blocks for 13). In contrast, English-speaking

first graders rarely chose to use ten-blocks to represent two-digit numbers.

Instead, they only used one-blocks (e.g., 13 one-blocks for 13).

Miura’s (1987) initial study sparked interest among those who study the

relation between language and thought in general and mathematics in partic-

ular. Replications, however, were necessary to determine if Miura’s initial

findings would hold up. In later replication studies, Miura and colleagues

recruited first graders, who had not been taught two-digit numbers, from a

wider range of nations. From East Asia, they recruited children from China,

Japan, and Korea. From non-East Asia, children from France and Sweden,

in addition to the United States, were included. The Swedish number naming

system is almost identical to the English system. The French system shares

some characteristics similar to English but has its own unique number names

as mentioned earlier. The results of these studies showed remarkable similar-

ity to Miura’s initial findings. For example, when asked to construct 28, the

overwhelming majority of Chinese-, Japanese-, and Korean-speaking first

graders preferred to use 2 ten-blocks and 8 one-blocks (i.e., the base-10 con-

struction), whereas almost all English-speaking counterparts selected 28 one-

blocks as their first construction (Miura, Kim, Chang, & Okamoto, 1988).

French- and Swedish-speaking first graders were found to be much like

English-speaking participants in that they also selected one-blocks to show

two-digit numbers during the first attempt (Miura, Okamoto, Kim, Steere, &

Fayol, 1993).

It is possible that children’s initial construction does not tell the whole

story about their cognitive representation of number. Miura and colleagues

(Miura et al., 1988) thus asked children to come up with another way to show

the same number. Considering the two constructions children made, they

found large differences in how English- and East Asian-speaking children

conceived of two-digit numbers: 76%, 79%, and 98% of Chinese, Japanese,

and Korean first graders, respectively, made base-10 constructions for all

of the numbers in either the first or second attempt or both, whereas only

13% of English-speaking first graders did so. Furthermore, about half of

the English-speaking children did not use the base-10 construction at all.

2. The participants resided in California, attending a Saturday Japanese school. All of them spoke

Japanese fluently, and their home language was Japanese.
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Somewhat similar results were found in the 1993 study: 67% and 100% of

Japanese and Korean children, respectively, made base-10 constructions for

all of the numbers in either the first or second attempt or both. In contrast,

35%, 65%, and 8% of French, Swedish, and US children did so (Miura

et al., 1993). The Swedish result was close to that of Japanese. When the first

attempt was considered, however, over 98% of the Swedish first graders

chose to use one-blocks only, whereas over 72% of the Japanese counterparts

made base-10 constructions.

Across the three studies, common findings are that East Asian speakers

differed significantly from non-East Asian speakers in the kinds of construc-

tions they made for two-digit numbers. From these results, Miura and collea-

gues inferred that ancient Chinese-based number systems influenced the way

that young children mentally represent two-digit numbers.

A major critique of these studies is that the results could be due to cultural

factors other than linguistic differences (cf., Towse, Muldoon, & Simms,

2015; Towse & Saxton, 1997). Because the participants came from different

cultures, children’s cultural and educational experiences could be confo-

unding factors. Dowker, Bala, and Lloyd (2008) tested this possibility with

children who lived in the same region of Wales. Children in Wales speak

Welsh or English or both. The number system in Welsh is congruent with

the base-10 system. Dowker et al. found that Welsh-speaking children

understood two-digit numbers more accurately than their English-speaking

counterparts. Thus, the results from their study provide support for the idea

that there is a causal link between numerical language and children’s num-

erical thinking.

Numerical Language and Estimation of Numerical Magnitudes

More recently, several cross-cultural studies were conducted to examine the

link between numerical language and children’s understanding of numerical

magnitudes. Siegler and Mu (2008), for example, asked Chinese and US kin-

dergartners to estimate single- and two-digit numbers on a 0–100 number line.

Children were told the locations of 0 (far left) and 100 (far right) on the num-

ber line and asked to show where each of the target numbers would go. The

literature on this topic has shown that kindergartners in the United States typ-

ically overestimate smaller numbers and underestimate larger numbers, result-

ing in an estimation pattern that is best described as logarithmic (e.g.,

Siegler & Booth, 2004). By second grade, children gain better understanding

of the correspondence between numerals and their magnitudes. Thus, their

estimation pattern is best described as linear. Siegler and Mu’s study found

that Chinese kindergartners already showed a linear pattern of numerical esti-

mation. US kindergartners’ estimation, however, was logarithmic as has been

found in other studies (see Chapter 5 by Opfer et al. for a thorough analysis of

number-line estimation and cross-cultural differences in this skill).

Although Siegler and Mu (2008) did not attribute their findings to regular

and irregular counting systems of Chinese and English, respectively, other
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studies have made an explicit link to the linguistic factor. Dowker and Roberts

(2015) examined this question with Welsh- and English-speaking 6-year-old

children who lived in the same region of Wales. Similar to Siegler and Mu,

they asked children to mark where a particular number would go on the

0–100 number line. They found that overall, Welsh-speaking children were

more accurate in their estimation than their English-speaking counterparts.

Their further analyses revealed interesting findings. For the numbers under

10, Welsh- and English-speaking children did not differ in their estimation.

However, for numbers above 10 and in particular above 20, Welsh-speaking

children were significantly more accurate than their English-speaking coun-

terparts. Similar findings were reported between German- and Italian-

speaking children (Helmreich et al., 2011). The German counting system

includes inversion properties (e.g., 48 is spoken as “eight and forty”), whereas

no such properties appear in Italian. Helmreich et al. found that Italian-

speaking children were more accurate in number-line estimation than their

German-speaking counterparts. Thus, the cross-cultural comparisons of

numerical estimation further provide support for the link between numerical

language and children’s numerical thinking.

Relation of Numerical Language to Mathematics Achievement

The studies discussed above provided evidence that numerical language char-

acteristics influence the way children understand two-digit numbers. The

question then is in what ways, if any, differences in cognitive representation

of number might be related to mathematics performance. This question was

addressed in Miura and Okamoto’s (1989) study, albeit indirectly. They

assessed English- and Japanese-speaking children’s mathematics achievement

and their cognitive representation of number. The achievement measures were

not the same across cultures. In the United States, it was the Educational

Records Bureau’s standardized achievement test. In Japan, it was based on

teacher ratings. Because the two measures were drastically different, analyses

were carried out only within each nation. Miura and Okamoto reported that

being able to show two-digit numbers in two different ways (e.g., the correct

combination of ten- and one-blocks vs one-blocks only) was significantly cor-

related with mathematics achievement (r¼0.49 and r¼0.37 for the Japanese

and United States participants, respectively).

Place-Value Understanding

Place value refers to the idea that the value of a digit depends on its relative posi-

tion in a number. That is, the value of a given digit in amultidigit numeral depends

on the face value of the digit (0–9) and on its position in the numeral, with the

value of each position increasing by powers of 10 from right to left. In other

words, to say that a child has an understanding of place value requires that the

child understands the rules of the base-10 numeration system (e.g., the “2” in
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28 stands for 20). It follows then that children who think of numbers as consisting

of tens and ones are likely to show strong place value understanding.

Miura and colleagues tested this possibility (Miura & Okamoto, 1989;

Miura et al., 1993). In addition to constructing two-digit numbers using

base-10 blocks, they asked a series of questions about children’s understand-

ing of place value. A relatively easy question involved showing children a

card with a two-digit number written on it and asking them to point to the

numeral in the one’s and ten’s position. A slightly more difficult question

entailed presenting children with 3 ten-blocks and 12 one-blocks and asking

them to write the number the blocks represented. A more difficult question

was posed when children were shown 3 clear plastic cups and 13 one-blocks.

They were then asked to put four one-blocks in each cup. This resulted in 3
cups (with four one-blocks in each cup) and 1 one-block remaining. Thus,

children saw 1 cube and 3 cups. The experimenter then showed a card with

13 written on it and pointed to the “1” and the “3” in turn and asked what each

meant in relation to the cups and cubes in front of them. Children with weak

or no understanding of place value were often distracted by the visual display

and said that the 1 in 13 referred to 1 cube and the 3 in 13 referred to 3 cups.

When Miura and Okamoto (1989) compared US and Japanese first gra-

ders’ place value understanding, they found a statistically significant differ-

ence in favor of Japanese children. In fact, one-half of English-speaking

first graders were unable to respond to any of the place value questions,

whereas all of the Japanese counterparts responded to at least one problem

correctly, and 42% of them solved all of the problems correctly. Due, in part,

to the small sample, no statistically significant correlations between cognitive

representation of number and place value understanding were found in either

group. In another study in which first graders from a greater number of

nations were recruited, Miura et al. (1993) reported that East Asian-speaking

children from Japan and Korea performed significantly better on the place

value task than those from France, Sweden, and the United States. To exam-

ine the relation between cognitive representation of number and place value

understanding, all children were combined for a regression analysis. The

results showed that 58% of the variance in place value performance was

explained by children’s initial base-10 constructions as opposed to their sec-

ond construction.

Although the evidence is correlational, the results across the two studies

suggest that children’s spontaneous preference to represent two-digit numbers

as consisting of tens and ones (as opposed to only ones) facilitates the acqui-

sition of place value of two-digit numbers, which, in theory, should provide a

strong basis for generalizing the rules of base-10 for two-digit numbers to

multidigit numbers. This should, in turn, facilitate children’s understanding

of later arithmetic performance, including multidigit column addition and sub-

traction. In fact, Moeller, Pixner, Zuber, Kaufmann, and Nuerk (2011) found

that early mastery of base-10 knowledge in first grade was a reliable predictor

of later arithmetic performance in third grade. The opposite has also been
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ten and 4 ones. Young children have more practice with number combinations

up to 10 and adding two single-digit numbers. Thus, the Japanese method is

less prone to errors. The first method, however, requires that children know

number facts beyond 10 which is more advanced or use other strategies

such as “counting up from” (e.g., 14�8 is accomplished by counting up from

8 to 14), which is more prone to counting errors. These examples suggest that

differences in how number words are spoken have implications for how arith-

metic computation is taught.

Fraction Terms

Many children and adults for that matter find fractions difficult (Ma, 1999;

Moseley & Okamoto, 2008; Moseley, Okamoto, & Ishida, 2007; Siegler et al.,

2010). It has been reported that only 13% of US fifth graders reached fraction

proficiency (Princiotta, Flanagan, & Germino Hausken, 2006). This is of seri-

ous concern as understanding of fractions has been identified as a strong pre-

dictor of later success in mathematics in the United States and the United

Kingdom (Siegler et al., 2012). When children are first learning fractions,

they often apply what they know about whole number arithmetic to fraction

arithmetic. This is known in the literature as the “whole number bias” (e.g.,

Ni & Zhou, 2005; Vosniadou, Vamvakoussi, & Skopeliti, 2008). For one

thing, children do not see a fraction notation as referring to a particular quan-

tity. Instead, they treat the numerator and denominator as two separate whole

numbers. Thus, 2/3+1/3 could result in an answer 3/6 (e.g., Mack, 1990).

English fraction terms are not particularly helpful in overcoming this miscon-

ception. For example, 2/3 is spoken as “two-thirds,” which does not readily

convey any fraction meaning for children who are learning fractions for the

first time. In contrast, in East Asian languages, 2/3 is spoken as “of (the whole)

divided into three, (take) two.” This conveys the notion of part-whole. Of course,

part-whole is just one interpretation of rational numbers (Moss & Case, 1999),

and full-fledged understanding of rational numbers requires expanded and multi-

ple interpretations (Behr, Harel, Post, & Lesh, 1992; Kieren, 1993). Nonetheless,

part-whole is one of the meanings that fractional notations convey, and children

need to develop this understanding as well.

Miura, Okamoto, Vlahovic-Stetic, Kim, and Han (1999) hypothesized that

East Asian children who hear and speak fraction terms in which the part-

whole relation is embedded might find it easier to identify the part-whole

interpretation of fractions than their non-East Asian counterparts. They tested

this hypothesis in a cross-sectional study of first and second graders from

Croatia, Korea, and the United States. Data were collected from different

age groups of children in each nation: the first group in the middle of the first

grade, the second group at the end of first grade, and the third group at the

beginning of second grade. Children saw and heard each fraction name in

their native language and were asked to select one from four pictorial repre-

sentations that corresponded to the target fraction (see Fig. 2). All four
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representations conveyed the part-whole meaning of fractions (e.g., a bar or a

circle divided into a number of parts) with only one option matching the target

fraction. The results showed that Korean children at the end of first grade

already outperformed those in Croatia and the United States at the beginning

of second grade. The results suggest that East Asian fraction words may facil-

itate children’s interpretation of part-whole fractions by making a stronger

association between the spoken words and corresponding part-whole visual

representations. It should be noted that these results await replication (cf.,

Paik & Mix, 2003).

Terms for Geometric Shapes

English terms for geometric shapes are derived from Greek and Latin words.

As shown in Table 3, these terms tend to be long and complicated. For young

children learning shape names, these are all new words with little hint embed-

ded in the names to link to visual representations. This is particularly true for

shapes with four or more angles. In contrast, Chinese-based geometric terms

are relatively straightforward. For example, pentagon is a five-angle shape

(5角形) in Japanese. Aside from rectangle, all standard 2-D shapes that chil-

dren see in the shape chart take a form of “(the number of angles)-angle

shape.”3 That is, the meaning of each of these shapes is embedded in its term.

Children learning these simple terms should have an easier time linking words

to visuals and their properties than those who must memorize complex terms.

To the best of my knowledge, no cross-cultural studies have examined this

relation. The only cross-cultural studies in this general area of spatial terms

examined young English- and Korean-speaking children’s categorization of

spatial words such as “in” and “on” (Choi & Bowerman, 1991; Choi,

McDonough, Bowerman, & Mandler, 1999). Using a preferential looking

paradigm, Choi et al. (1999) found that two groups of children as young as

18 months old showed sensitivity to language-specific spatial categories.

Coupled with recent findings that spatial language supports children’s

encoding of spatial properties such as big, tall, and curvy and predicts their

later performance on spatial reasoning (Pruden, Levine, & Huttenlocher,

2011), it is conceivable that differences in geometric shape names between

English and Japanese could result in different rates of acquisition of spatial

properties.

FIG. 2 Four pictorial representations from which to select one that matches
1

4
.

3. 3 D shape names also express property meanings more clearly in Japanese than in English

(e.g., six angle pillar vs hexagonal prism).
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MATHEMATICS ACHIEVEMENT, CENTRAL CONCEPTUAL
KNOWLEDGE, AND NUMERICAL LANGUAGE

Although explaining sources of achievement differences is important, so is

considering what these differences tell us about children’s understanding of

number systems (e.g., whole numbers and rational numbers). Case and collea-

gues (e.g., Case, 1998; Case & Okamoto, 1996) distinguished mathematics

achievement from foundational conceptual knowledge of number. This latter

knowledge is a domain-specific conceptual structure, often referred to as a

central conceptual structure in a specific domain (e.g., Case & Okamoto,

1996). In elementary school years, mathematics achievement in the number

domain is a reflection of children’s mastery of school arithmetic content. In

contrast, children’s conceptual knowledge of whole numbers has its root in

the kind of core knowledge that develops during infancy (see Okamoto,

2010, for a review). This core knowledge has been found to develop not

only in human infants but also in macaque monkeys (e.g., Hauser & Carey,

2003). Furthermore, adults who grew up in cultures without demands for enu-

meration skills also possess this core knowledge (e.g., Pica, Lemer, Izard, &

Dehaene, 2004).

If core knowledge provides foundations for children’s central conceptual

knowledge, it is possible that central numerical knowledge develops at similar

rates in cultures where enumeration skills are valued. However, the particular

skills children are encouraged to attain could differ, which might explain large

differences in achievement. In a series of studies, we demonstrated that this

possibility holds up in general. Evidence counter to this general trend was found

among 6-year-old children in Japan who exhibited numerical knowledge 1–2
years ahead of their US peers who, otherwise, showed age-appropriate concep-

tual development. Among many competing explanations, I have come to

conclude that variations in numerical language characteristics play a major role

in young Japanese children’s acquisition of central numerical knowledge.

Development of Core Conceptual Knowledge

Infants may come into this world with the ability to detect numerical features

of the world. However, it takes a few more years before children are able to

count objects reliably (e.g., Gelman, 1978) or compare quantities (e.g.,

Starkey, 1992). As Gelman and Gallistel (1978) have shown, the act of count-

ing requires children to acquire several important principles. For example,

children must apply number names in the same order every time they count,

count one item at a time without skipping any (and not counting the same

item more than once), and know that the last number name spoken represents

the cardinal value of the set. In other words, children must learn to adhere to

cultural conventions (including number names) associated with the act of

counting. Building on Gelman and Gallistel’s work, Case (1992a) proposed
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that by 4 years of age, children develop a schema that allows them to count a

small number of items without error (Fig. 3(left)). At the same time, children

develop a global quantity schema (Fig. 3(right)). This schema allows

preschool-age children to compare quantities and understand the effects of

quantity transformations such as addition and subtraction of small numbers

(Starkey, 1992; Wynn, 1992). These two schemas provide foundations for

preschoolers to interpret the quantitative world around them.

As children acquire more experience working with numbers and quantities

in a broad range of situations, they learn to use counting as part of quantitative

reasoning. For example, when asked which side of a balance scale (each hold-

ing different numbers of weights) would tilt, children by kindergarten or first

grade realize that counting is a useful way to make quantitative judgments. In

contrast, children in preschool years often fail to count the number of weights

but instead visually inspect which pile of weights looks higher (Case,

Okamoto, Henderson, McKeough, & Bleiker, 1996). Observations such as

these led Case and colleagues to conclude that by around 6 years of age, chil-

dren typically develop central numerical knowledge that results from the inte-

gration of the two earlier schemas (e.g., Case & Okamoto, 1996; see Fig. 4).

This knowledge structure is often referred to as a “mental number line”

(Case, 1996a).

As shown in Fig. 4, to develop a functional understanding of a mental

number line requires that children understand the correspondence between

Arabic numerals (written and spoken) and their magnitudes. This point was

recently elaborated by Siegler, Thompson, and Schneider (2011). They

reviewed studies of numerical magnitude estimation and concluded that it is

not until 5 or 6 years of age that children develop a mental number line for

single-digit numbers. They further articulated that the acquisition of this initial

mental number line provides a foundation for children’s understanding of the

whole number system and the rational number system. (See also Chapter 5

Counting Schema Quantity Schema

Add more gives...

Take away leaves

Begin

next

“One!” “Two!” “Three!”

End

A Little

A Lot

next

FIG. 3 Four year olds’ counting schema (left) and quantity schema (right).
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by Opfer et al. for a theory that the cross-national gap in mathematics achieve-

ment may be attributable to a difference in the representation of symbolic

numerical magnitude that is primarily influenced by early instructional inputs.)

Case and Okamoto (1996) hypothesized that the acquisition of a mental

number line provides a conceptual foundation through which children inter-

pret the numerical attributes of the world. That is, it serves as a tool to create

new knowledge necessary to interpret cultural concepts of time telling, cur-

rency system, and distribution of resources, and to take advantage of instruc-

tion in school. It should be emphasized that children’s experiences are

culturally bound.

By about 8 years of age, children’s mastery of the mental number line

becomes sufficiently fluent, allowing them to focus on and tentatively begin

relating two mental number lines. As a result, new properties of numerical

systems such as the base-10 system become part of their understanding. Chil-

dren’s understanding at this level, however, is limited to interpreting the rela-

tion between ones and tens. That is, 8-year olds have a difficult time

generalizing the rules of base-10 to numbers beyond 99. By about age 10,

children begin to generalize the base-10 rules to three-digit numbers and pos-

sibly beyond. They are also able to develop the notion that the numerical rules

and operations developed earlier can be treated as objects of manipulations to

carry out complex arithmetic reasoning. For example, in comparing the

numerical magnitudes of (8�3) and (9�5) mentally, children of this age

are able to treat the result of one computation 5 (8�3¼5) as a new object

to compare with the result of another computation 4 (9�5¼4). Fig. 5 shows

a schematic sketch of the developmental progression.

Cultural Comparisons of Central Conceptual Knowledge
and Specific Skills

Central numerical knowledge that develops during elementary school years is

shaped by both biologically based factors (e.g., neural development) and chil-

dren’s everyday cultural experiences (e.g., mastering currency). Case (1996b)

A Little

+1

A Lotdown

next
up

down

next
up

down

next
up

down

next
up

–1
1 2

+1

–1
3 4 5

+1

–1

+1

–1

“One” “Two” “Three” “Four” “Five”

FIG. 4 Six year olds’ central conceptual knowledge (mental number line).
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differences in drawing skills in favor of Asian children. However, there were

no statistically significant differences in how children spatially organized

objects to be drawn. That is, children in all four nations developed age-

appropriate central spatial knowledge. Differences only appeared in children’s

specific skills of drawing. In both China and Japan, drawing is viewed as an

important cultural activity and included in weekly school schedules. In

Canada and the United States, drawing is overshadowed by the “three R’s”

and in some cases completely omitted from the school schedule. In sum, cul-

tural emphasis on drawing was seen in children’s drawing skills but not in

central spatial knowledge.

Central Numerical Knowledge and Mathematics Achievement

Two studies are reported that examined the relation between central numerical

knowledge and mathematics achievement. The first study compared 6-, 8-,

and 10-year-old children in Japan and the United States (Okamoto et al.,

1996). To test Case’s theory of whole number development, children were

individually tested on the number knowledge and balance scale tests. The

number knowledge test included items that assessed elements described in

Figs. 3–5. One important feature was to develop questions that children typi-

cally do not encounter in school. All three age groups took this test. As for the

balance scale test, the 6- and 10-year olds in each nation took this test. They were

asked which side of the scale would tilt and why, as the number of weights and

distance from the fulcrumwere manipulated. The items for the balance scale test

were once again designed to assess their level of central numerical knowledge.

An achievement test was group administered to the 10-year-old children in each

nation. The items were drawn from the fifth-grade test developed by Stevenson

and colleagues (e.g., Stevenson et al., 1986).

As expected, there was a large and statistically significant achievement

difference in favor of Japanese 10-year-old children. Despite this difference,

no significant differences were found for the 6- or 10-year-old children in

their performance on the balance scale test. As for the number knowledge

test, no differences were found for the 8- and 10-year-old children. However,

Japanese 6-year-old children outperformed their US counterparts. For the

most part, these results show the same trend as in the drawing studies. That

is, mathematics achievement (specific knowledge) valued by Japanese culture

(as described in Stevenson et al., 1986, and Stigler & Hiebert, 1999) showed a

substantial difference. In contrast, all age groups of children in both nations

with the exception of the Japanese 6-year olds on the number knowledge

test showed age-appropriate central numerical knowledge.

This cross-cultural study recruited students from middle-income families

in each nation. It could be that if one tested US children who are from high-

income families who attended a school well-known for its rigorous curricu-

lum and high achievement in mathematics, the results could be different.
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Effects of Numerical Language

The anomaly found in the cross-cultural studies was significantly stronger

performance by Japanese 6-year olds than their US counterparts on the num-

ber knowledge test. US 6-year olds, however, showed age-appropriate perfor-

mance on the number knowledge and balance scale tests. Japanese

counterparts also showed age-appropriate performance on the balance scale

test. Thus, it was only on the number knowledge test that Japanese 6-year olds

excelled. In fact, several of these Japanese 6-year olds successfully answered

the 8-year-old level items designed to require understanding of two mental

numbers or the meaning of tens and ones (see Fig. 5). What do these results

mean? Among many competing explanations, I favor the numerical language

explanation. As the data from Miura and colleagues’ studies showed, East

Asian speakers, including Japanese children, develop an understanding of

the meaning of tens and ones earlier than their non-East Asian peers. The

number knowledge test at the 8-year-old level included items such as

“which is bigger, 69 or 71?” Japanese 6-year-old children who hear “six-tens

nine” and “seven-tens one” could easily distinguish tens and ones and select

the correct answer. In contrast, English-speaking 6-year olds do not have this

language advantage. They often mistakenly attend to the number words in the

one’s column to respond to this sort of question. In contrast, the variables in

the balance scale (i.e., the number and location of weights) used numbers less

than 10. Thus, there was no advantage for Japanese 6-year olds on this test.

As number words are used to solve many numerical situations in everyday

life, it is conceivable that quality and quantity of experience to develop base-

10 knowledge helped advance Japanese 6-year olds’ central numerical knowl-

edge. The data presented in Case et al. (1996) provide a clue as to if this is a

possibility. To verify the existence of the central numerical knowledge, Case

et al. developed a battery of six tests in the numerical domain. The 8-year-old-

level items on the three of the tests (including the number knowledge test)

used two-digit numbers, whereas the three other tests (including the balance

scale test) used only single-digit numbers. When this battery was administered

to 6-year-old children in the United States, Case et al. found a single latent

factor underlying children’s numerical thought. It is conceivable that two

latent factors might result if this battery was administered to Japanese

6-year olds. Only by administering the entire battery cross-culturally, would

we know whether numerical language differentially influences the develop-

ment of core numerical knowledge. It might confirm that Japanese 6-year

olds’ performance on the balance scale test was the anomaly in the data col-

lected. Given the pattern of performance reflected in the available data, my

tentative conclusion is that variations in numerical language characteristics

played a major role in young Japanese children’s development of central

numerical knowledge.
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CONCLUSIONS

In this chapter, I examined the role of mathematics language in explaining

children’s mathematics achievement and the development of central numeri-

cal knowledge. A particular focus was placed on children who are just begin-

ning formal schooling. I presented evidence that Chinese, Japanese, and

Korean children of this age have an easier time mastering place value because

place value is embedded in their spoken language. In contrast, children who

speak non-East Asian languages such as English, French, and Swedish do

not have this sort of language support. Thus, they must make an explicit

link among Arabic numerals, spoken words, and place value. Because the

notion of place value is important in carrying out multidigit arithmetic, it fol-

lows that the early advantage of these East Asian speakers may facilitate later

learning of mathematics. Of course, international comparisons of mathematics

achievement go beyond just testing whole number understanding. I presented

preliminary evidence that differences in mathematical language characteris-

tics might contribute to achievement differences in other areas such as frac-

tions and geometry.

My primary argument is that language characteristics influence specific

aspects of mathematics performance. I am not proposing that these East Asian

languages support all aspects of mathematics learning. In fact, when children

are first learning single-digit number names, Japanese 2- to 3-year olds were

found to be behind their English- and Russian-speaking peers in mastering the

cardinal meaning of one, two, and three (Sarnecka, Kamenskaya, Yamana,

Ogura, & Yudovina, 2007). Another study also confirmed that Japanese

2-year olds were behind their English-speaking peers in small number com-

prehension (Barner, Libenson, Cheung, & Takasaki, 2009). Japanese toddlers’

difficulty understanding single-digit numbers is due, in part, to the dual count-

ing systems of Japanese number words 1–10. There are two sets of counting

words for these numbers in Japanese (see Okamoto, 2015, for a review). It

is understandable if Japanese toddlers are delayed because in everyday life

they hear two different number words, say “ichi” and “hi” for 1.5 These initial

difficulties, however, are quickly overcome by 4-year olds, and Japanese pre-

schoolers master counting principles just like their English-speaking peers do.

About the time children begin formal schooling, important conceptual

development takes place (Case, 1996a). As described in this chapter, by about

6 years of age, children across cultures with demands for enumeration skills

develop central numerical knowledge that allows them to mentally reason

about quantitative relations with numbers. Although 6-year olds’ mental

5. Although number words in Table 1 are more commonly used in everyday life and in learning

mathematics, there exist indigenous Japanese counting words for 1 10. Japanese toddlers are

exposed to these two different ways of counting from early on (e.g., “ichi mai” for one sheet of

paper and “hi tori” for one person).
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arithmetic is typically limited to single-digit numbers, the data from cross-

cultural studies pointed to the possibility that Japanese 6-year olds were

beginning to show mental manipulations of two-digit numbers. The cross-

cultural studies provided evidence that despite large achievement differences,

central conceptual knowledge develops at similar rates across cultures with

the exception of the just-mentioned Japanese 6-year olds.

As pointed out in previous studies, children in Japan spend more time

studying mathematics than their US peers (e.g., Stevenson et al., 1986),

and mathematics teaching in Japan is qualitatively different from teaching

in the United States (Stigler & Hiebert, 1999). Furthermore, children’s expe-

rience with numbers in and out of school is different, due in part to numeri-

cal language characteristics. Take, for example, children’s acquisition of the

currency system. Children in all cultures with trade learn to use their cur-

rency to determine how much to pay and how much change to receive. How-

ever, the currency systems themselves differ. The coins in the United States,

for example, include a penny, a dime, and a quarter, and a 20-dollar bill

is commonly used, whereas in Japan, they are one yen, five yen, ten yen,

five-tens yen, one-hundred yen, and five-hundreds yen, and there is no bill

equivalence to the US $20 bill. The Japanese currency system thus rein-

forces children’s acquisition of tens and ones in everyday experience of

shopping.

Cooking is also an activity practiced in all cultures. Japanese children

learn to use the metric system using base-10 spoken number words. This is

not the case in the United States. These are just some of the everyday experi-

ences in which children speak regular or irregular number words. Japanese

6-year olds are developing specific numerical skills (e.g., money knowledge

and metric system), all of which use the regular base-10 number words. It is

thus reasonable to expect that Japanese 6-year olds’ acquisition of specific

skills contributes to the development of central numerical knowledge. Until

further data show otherwise, I conclude that spoken Japanese number words

that include clear markers for place value influence not only mathematics

achievement but also the development of central numerical knowledge for this

age group.
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